Synthesis of Monoethers by Addition of Aliphatic Diols to Bicyclo[2.2.1]hept-2-enes

M. K. Mamedov and A. G. Piraliev
Institute of Petrochemical Processes, National Academy of Azerbaidjan, pr. Khodzhaly 30, Baku, Az 1025 Azerbaidjan

Received August 21, 2006; revised December 22, 2006

Abstract

Addition of aliphatic diols to bicyclo[2.2.1]hept-2-ene and its 5-alkyl-substituted derivatives in the presence of naphthalene-1,5-disulfonic acid leads to the formation of the corresponding bicyclo[2.2.1]hept-2-yl monoethers in high yields.

DOI: 10.1134/S1070428007040069

Additions of alcohols and diols to cyclic olefins in the presence of various acid catalysts, including boron trifluoride-ether complex [1], heteropolyacids [2], Lewis acids [3], and KU-2-8 ion exchanger (H-form) [4], were reported to give the corresponding ethers and hydroxy ethers. In the present work we used a new catalyst, naphthalene-1,5-disulfonic acid, to effect the addition of aliphatic diols to bicyclo[2.2.1]hept-2-enes I-III and obtained the corresponding monoethers (Scheme 1). We also examined the effect of various parameters on the reaction course and found optimal conditions for the process: temperature $100^{\circ} \mathrm{C}$, amount of the catalyst $2.5 \mathrm{wt} \%$ relative to the initial bicyclic olefin, molar reactant ratio $2: 1$, reaction time 3 h . Under these conditions, the yields of monoethers IVXVIII attained 83-98\%. The physical constants and spectral data for compounds IV and VII coincided with those reported in [4], and the data for the newly synthesized compounds are given in Experimental.

The yield of monoethers decreases as the molecular weight of the diol rises and in going from α, ω-diols to 1,2-diols; the primary hydroxy group in diol molecule was more active than the secondary one, and only the former was involved in the ether formation. The addition of diols to bicyclo[2.2.1]hept-2-ene (I) was stereoselective, and only bicyclo[2.2.1]hept-exo-2-yl ethers were obtained. In the reactions with 5 -alkylbicyclo-[2.2.1]hept-2-enes II and III regioisomeric 5- and 6 -alkylbicyclo-[2.2.1]hept-2-yl ethers were formed at a ratio of 49:1.

The structure of hydroxy ethers IV-XVIII was confirmed by the GLC data and IR and ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra. The IR spectra of IV-XVIII contained a strong absorption band at 880 and $920 \mathrm{~cm}^{-1}$, typical of exo-2 isomers; the hydroxy group and ether bond gave rise to absorption bands at 3350 and 1200$1000 \mathrm{~cm}^{-1}$, respectively. Compounds IV-XVIII were also obtained by independent synthesis, i.e., by hydrol-

Scheme 1.

XIII-XVIII
IV-VI, VIII, R = H; VII, VIII, X, XV, R = Me; X-XII, XVIII, R = Et; XIII, XV, XVII, R' = Me; XIV, XVI, XVIII, R' = Et; $n=2,3,4$.

ysis of bicyclo[2.2.1]hept-2-yl esters [5] and subsequent etherification of bicyclic alcohols with the corresponding diols in the presence of naphthalene-1,5-disulfonic acid in a flask equipped with a DeanStark trap (Scheme 2).

All the obtained monoethers are colorless liquids, some of which possess a pleasant odor and are promising as components of synthetic fragrant substances, as well as for esterification of saturated and unsaturated acids.

EXPERIMENTAL

The IR spectra were recorded on a UR-20 spectrometer. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were measured from solutions in CCl_{4} on a Varian FT-80 instrument (80 MHz) using HMDS as internal reference. The purity of the products was checked by GLC on an LKhM-8MD chromatograph equipped with a 2 -m column packed with 10% of poly(ethylene glycol) succinate on Sferokhrom; oven temperature $140^{\circ} \mathrm{C}$, detector temperature $200^{\circ} \mathrm{C}$, injector temperature $250^{\circ} \mathrm{C}$; detector current 120 mA ; carrier gas helium, flow rate $45 \mathrm{ml} / \mathrm{min}$; the purity was $99.2-99.7 \%$.

The addition of diols to bicyclo[2.2.1]hept-2-enes I-III was carried out in a high-pressure reactor. Initial compounds I-III were synthesized by condensation of the corresponding olefins with cyclopentadiene [6, 7]. 5-Methyl- and 5-ethylbicyclo[2.2.1]hept-2-enes were isolated as mixtures of endo and exo isomers, which were converted into the exo isomers in the presence of AlCl_{3} [8]; Bicyclo[2.2.1]hept-2-ene (I), mp $46^{\circ} \mathrm{C}$; exo-5-methylbicyclo[2.2.1]hept-2-ene (II), bp $115.5^{\circ} \mathrm{C}$, $d_{4}^{20}=0.8605, n_{\mathrm{D}}^{20}=1.4600 ;$ exo-5-ethylbicyclo[2.2.1]-hept-2-ene (III), bp $130^{\circ} \mathrm{C}, d_{4}^{20}=0.8551, n_{\mathrm{D}}^{20}=1.4609$. The properties of the diols used were consistent with reference data [9]. Naphthalene-1,5-disulfonic acid had mp $240-245^{\circ} \mathrm{C}$.

2-(Bicyclo[2.2.1]hept-exo-2-yloxy)ethanol (IV). a. A mixture of 47.0 g of compound $\mathbf{I}, 62.0 \mathrm{~g}$ of ethylene glycol, and 1.17 g of naphthalene-1,5-disul-
fonic acid was heated for 3 h at $100^{\circ} \mathrm{C}$. Fractional distillation under reduced pressure gave 76.4 g (98%) of hydroxy ether IV, bp $71-71.5^{\circ} \mathrm{C}(5 \mathrm{~mm}), d_{4}^{20}=$ $1.0152, n_{\mathrm{D}}^{20}=1.4718 .{ }^{1} \mathrm{H}$ NMR spectrum, $\delta, \mathrm{ppm}: 1.3 \mathrm{~d}$ $\left(2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.4 \mathrm{~d}\left(2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.7 \mathrm{~d}\left(4 \mathrm{H}, \mathrm{CH}_{2}\right), 2.5 \mathrm{~m}$ $\left(2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.7 \mathrm{q}\left(4 \mathrm{H}, \mathrm{OCH}_{2}\right), 3.9 \mathrm{~m}(1 \mathrm{H}, \mathrm{CHO}), 4.8 \mathrm{~s}$ $(1 \mathrm{H}, \mathrm{OH}) .{ }^{13} \mathrm{C}$ NMR spectrum, δ_{C}, ppm: $85.6\left(\mathrm{C}^{2}\right)$, $70.6\left(\mathrm{C}^{9}\right), 70.1\left(\mathrm{C}^{8}\right), 41.1\left(\mathrm{C}^{1}\right) 39.9\left(\mathrm{C}^{4}\right), 36.9\left(\mathrm{C}^{3}\right)$, $28.7\left(C^{6}\right), 25.9\left(C^{7}\right), 24.0\left(C^{5}\right)$. Found, \%: C 69.11; H 10.10. $\mathrm{C}_{9} \mathrm{H}_{16} \mathrm{O}_{2}$. Calculated, \%: C 69.19; H 10.25 .

Compounds \mathbf{V}-XVIII were synthesized in a similar way.
b. A mixture of 56.0 g of bicyclo[2.2.1]heptan-exo2 -ol, 31.0 g of ethylene glycol, 100 g of benzene, and 2.17 g of naphthalene-1,5-disulfonic acid was heated for 3 h at $80^{\circ} \mathrm{C}$. Yield 74.0 g (95%), bp $71-71.5^{\circ} \mathrm{C}$ $(5 \mathrm{~mm}), d_{4}^{20}=1.0150, n_{\mathrm{D}}^{20}=1.4715$.

3-(Bicyclo[2.2.1]hept-exo-2-yloxy)propan-1-ol (V) was obtained from 47.0 g of compound \mathbf{I} and 76.0 g of propane-1,3-diol. Yield $80.7 \mathrm{~g}(95 \%)$, bp $80-$ $82^{\circ} \mathrm{C}(5 \mathrm{~mm}), d_{4}^{20}=1.0165, n_{\mathrm{D}}^{20}=1.4690 .{ }^{1} \mathrm{H}$ NMR spectrum, δ, ppm: $1.3 \mathrm{~d}\left(2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.4 \mathrm{~d}\left(2 \mathrm{H}, \mathrm{CH}_{2}\right)$, $1.8 \mathrm{~d}\left(4 \mathrm{H}, \mathrm{CH}_{2}\right), 2.5 \mathrm{~m}(2 \mathrm{H}, \mathrm{CH}), 3.8 \mathrm{q}\left(6 \mathrm{H}, \mathrm{CH}_{2}\right)$, $3.9 \mathrm{~m}(1 \mathrm{H}, \mathrm{CHO}), 4.8 \mathrm{~s}(1 \mathrm{H}, \mathrm{OH}) .{ }^{13} \mathrm{C}$ NMR spectrum, $\delta_{\mathrm{C}}, \mathrm{ppm}: 85.6\left(\mathrm{C}^{2}\right), 70.5\left(\mathrm{C}^{9}\right), 70.3\left(\mathrm{C}^{10}\right), 70.1\left(\mathrm{C}^{8}\right)$, $40.1\left(C^{1}\right), 39.9\left(C^{4}\right), 36.8\left(C^{3}\right), 30.4\left(C^{5}\right), 28.7\left(C^{6}\right)$, $25.9\left(\mathrm{C}^{7}\right)$. Found, \%: C 70.41; H 10.55. $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{O}_{2}$. Calculated, \%: C 70.55; H 10.66.

4-(Bicyclo[2.2.1]hept-exo-2-yloxy)butan-1-ol (VI) was obtained from 47.0 g of compound \mathbf{I} and 90.0 g of butane-1,4-diol. Yield $85.1 \mathrm{~g}(93 \%)$, bp $102-103^{\circ} \mathrm{C}$ $(5 \mathrm{~mm}), d_{4}^{20}=1.0100, n_{\mathrm{D}}^{20}=1.4699 .{ }^{1} \mathrm{H}$ NMR spectrum, δ, ppm: $1.3 \mathrm{~d}\left(2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.4 \mathrm{~d}\left(2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.8 \mathrm{~d}(4 \mathrm{H}$, $\left.\mathrm{CH}_{2}\right), 2.5 \mathrm{~m}(2 \mathrm{H}, \mathrm{CH}), 3.5-3.8 \mathrm{q}\left(8 \mathrm{H}, \mathrm{CH}_{2}\right), 3.9 \mathrm{~m}$ $(1 \mathrm{H}, \mathrm{CHO}), 4.7 \mathrm{~s}(1 \mathrm{H}, \mathrm{OH}) .{ }^{13} \mathrm{C}$ NMR spectrum, δ_{C}, ppm: $85.6\left(\mathrm{C}^{2}\right), 70.6\left(\mathrm{C}^{8}\right), 70.1\left(\mathrm{C}^{9}\right), 69.8\left(\mathrm{C}^{10}\right), 68.1$ $\left(\mathrm{C}^{11}\right), 40.1\left(\mathrm{C}^{1}\right) 39.9\left(\mathrm{C}^{4}\right), 36.8\left(\mathrm{C}^{3}\right), 28.7\left(\mathrm{C}^{6}\right), 25.9$ (C^{7}). Found, \%: C 71.21; H 10.71. $\mathrm{C}_{11} \mathrm{H}_{20} \mathrm{O}_{2}$. Calculated, \%: C 71.70; H 10.94.

2-(exo-5-Methylbicyclo[2.2.1]hept-exo-2-yloxy)ethanol (VII) was obtained from 54.0 g of compound

II and 62.0 g of ethylene glycol in the presence of 1.35 g of the catalyst. Yield $79.4 \mathrm{~g}(93 \%)$, bp $95-96^{\circ} \mathrm{C}$ $(5 \mathrm{~mm}), d_{4}^{20}=1.0040, n_{\mathrm{D}}^{20}=1.4726 .{ }^{1} \mathrm{H}$ NMR spectrum, δ, ppm: $0.9 \mathrm{~d}\left(3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.3 \mathrm{~d}\left(2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.4 \mathrm{~d}(2 \mathrm{H}$, $\left.\mathrm{CH}_{2}\right), 1.7 \mathrm{~d}\left(2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.1 \mathrm{~d}(1 \mathrm{H}, \mathrm{CH}), 2.5 \mathrm{~m}(2 \mathrm{H}$, $\mathrm{CH}), 3.8 \mathrm{q}\left(4 \mathrm{H}, \mathrm{CH}_{2}\right), 3.9 \mathrm{~m}(1 \mathrm{H}, \mathrm{CHO}), 4.8 \mathrm{~s}(1 \mathrm{H}$, $\mathrm{OH}) .{ }^{13} \mathrm{C}$ NMR spectrum, δ_{C}, ppm: $85.4\left(\mathrm{C}^{2}\right), 70.5$ $\left(\mathrm{C}^{9}\right), 70.2\left(\mathrm{C}^{10}\right), 42.0\left(\mathrm{C}^{1}\right), 39.4\left(\mathrm{C}^{4}\right), 36.2\left(\mathrm{C}^{3}\right), 35.1$ $\left(\mathrm{C}^{7}\right), 30.8\left(\mathrm{C}^{5}\right), 28.8\left(\mathrm{C}^{6}\right), 28.5\left(\mathrm{C}^{8}\right)$. Found, \%: C 70.50; H 10.62. $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{O}_{2}$. Calculated, \%: C 70.55; H 10.66 .

3-(exo-5-Methylbicyclo[2.2.1]hept-exo-2-yloxy)-propan-1-ol (VIII) was obtained from 54.0 g of compound II and 76.0 g of propane-1,3-diol in the presence of 1.35 g of the catalyst. Yield $84.9 \mathrm{~g}(92 \%)$, bp $107-108^{\circ} \mathrm{C}(5 \mathrm{~mm}), d_{4}^{20}=1.0012, n_{\mathrm{D}}^{20}=1.4735$. ${ }^{1} \mathrm{H}$ NMR spectrum, δ, ppm: $0.9 \mathrm{~d}\left(3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.3 \mathrm{~d}$ $\left(2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.4 \mathrm{~d}\left(2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.7 \mathrm{~d}\left(2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.1 \mathrm{~d}$ $(1 \mathrm{H}, \mathrm{CH}), 2.5 \mathrm{~m}(2 \mathrm{H}, \mathrm{CH}), 3.6-3.8 \mathrm{q}\left(6 \mathrm{H}, \mathrm{CH}_{2}\right), 3.9 \mathrm{~m}$ $(1 \mathrm{H}, \mathrm{CHO}), 4.7 \mathrm{~s}(1 \mathrm{H}, \mathrm{OH}) .{ }^{13} \mathrm{C}$ NMR spectrum, δ_{C}, ppm: $85.4\left(\mathrm{C}^{2}\right), 70.5\left(\mathrm{C}^{9}\right), 70.2\left(\mathrm{C}^{10}\right), 69.8\left(\mathrm{C}^{11}\right), 42.0$ $\left(\mathrm{C}^{1}\right), 39.4\left(\mathrm{C}^{4}\right), 36.2\left(\mathrm{C}^{3}\right), 35.0\left(\mathrm{C}^{7}\right), 30.8\left(\mathrm{C}^{5}\right), 28.7$ $\left(\mathrm{C}^{6}\right), 28.4\left(\mathrm{C}^{8}\right)$. Found, \%: C 71.49; H 10.71. $\mathrm{C}_{11} \mathrm{H}_{20} \mathrm{O}_{2}$. Calculated, \%: C 71.70; H 10.94.

4-(exo-5-Methylbicyclo[2.2.1]hept-exo-2-yloxy)-butan-1-ol (IX) was obtained from 54.0 g of compound II and 90.0 g of butane-1,4-diol in the presence of 1.35 g of the catalyst. Yield $86.1 \mathrm{~g}(87 \%)$, bp $120-$ $121^{\circ} \mathrm{C}(5 \mathrm{~mm}), d_{4}^{20}=0.9978, n_{\mathrm{D}}^{20}=1.4749$. Found, $\%$: C 72.42; H 11.0. $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{2}$. Calculated, \%: C 72.68; H 11.18 .

2-(exo-5-Ethylbicyclo[2.2.1]hept-exo-2-yloxy)ethanol (X) was obtained from 61.0 g of compound III and 62.0 g of ethylene glycol in the presence of 1.52 g of the catalyst. Yield $81.2 \mathrm{~g}(88 \%)$, bp $108-$ $109^{\circ} \mathrm{C}(5 \mathrm{~mm}), d_{4}^{20}=1.0000, n_{\mathrm{D}}^{20}=1.4738$. Found, \%: C 71.68; H 10.90. $\mathrm{C}_{11} \mathrm{H}_{20} \mathrm{O}_{2}$. Calculated, \%: C 71.70; H 10.94 .

3-(exo-5-Ethylbicyclo[2.2.1]hept-exo-2-yloxy)-propan-1-ol (XI) was obtained from 61.0 g of compound III and 76.0 g of propane-1,3-diol in the presence of 1.52 g of the catalyst. Yield $86.0 \mathrm{~g}(87 \%)$, bp $112-113^{\circ} \mathrm{C}(5 \mathrm{~mm}), d_{4}^{20}=0.9905, n_{\mathrm{D}}^{20}=1.4749$. Found, \%: C 72.48; H 11.01. $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{2}$. Calculated, \%: C 72.68; H 11.18.

4-(exo-5-Ethylbicyclo[2.2.1]hept-exo-2-yloxy)-butan-1-ol (XII) was obtained from 61.0 g of compound III and 90.0 g of butane-1,4-diol in the presence of 1.52 g of the catalyst. Yield $87.5 \mathrm{~g}(83 \%)$, bp $130-$
$131^{\circ} \mathrm{C}(5 \mathrm{~mm}), d_{4}^{20}=0.9815, n_{\mathrm{D}}^{20}=1.4769$. Found, $\%$: C 73.29; H 11.21. $\mathrm{C}_{13} \mathrm{H}_{24} \mathrm{O}_{2}$. Calculated, \%: C 73.54; H 11.39.

1-(Bicyclo[2.2.1]hept-exo-2-yloxy)propan-2-ol (XIII) was obtained from 47.0 g of compound \mathbf{I} and 76.0 g of propane-1,2-diol in the presence of 1.17 g of the catalyst. Yield $81.6 \mathrm{~g}(96 \%)$, bp $68-69^{\circ} \mathrm{C}(5 \mathrm{~mm})$, $d_{4}^{20}=1.0255, n_{\mathrm{D}}^{20}=1.4652 .{ }^{1} \mathrm{H}$ NMR spectrum, δ, ppm : $1.0 \mathrm{~d}\left(3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.3 \mathrm{~d}\left(2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.4 \mathrm{~d}\left(2 \mathrm{H}, \mathrm{CH}_{2}\right)$, $1.7 \mathrm{~d}\left(2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.1 \mathrm{~d}(1 \mathrm{H}, \mathrm{CH}), 2.5 \mathrm{~m}(2 \mathrm{H}, \mathrm{CH})$, $3.8 \mathrm{q}\left(4 \mathrm{H}, \mathrm{OCH}_{2}\right), 3.9 \mathrm{~m}(1 \mathrm{H}, \mathrm{CHO}), 4.8 \mathrm{~s}(1 \mathrm{H}, \mathrm{OH})$. ${ }^{13} \mathrm{C}$ NMR spectrum, δ_{C}, ppm: $85.6\left(\mathrm{C}^{2}\right), 70.5\left(\mathrm{C}^{8}\right), 70.1$ $\left(C^{9}\right), 41.1\left(C^{1}\right) 39.9\left(C^{4}\right), 36.9\left(C^{3}\right), 30.4\left(C^{5}\right), 28.7$ $\left(\mathrm{C}^{6}\right), 25.9\left(\mathrm{C}^{7}\right), 28.4\left(\mathrm{C}^{10}\right)$. Found, \%: C 70.33; H 10.41. $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{O}_{2}$. Calculated, \%: C 70.55; H 10.66.

1-(Bicyclo[2.2.1]hept-exo-2-yloxy)butan-2-ol (XIV) was obtained from 47.0 g of compound \mathbf{I} and 90.0 g of butane-1,2-diol in the presence of 1.17 g of the catalyst. Yield $83.6 \mathrm{~g}(91 \%)$, bp $91-92^{\circ} \mathrm{C}(5 \mathrm{~mm})$, $d_{4}^{20}=1.0011, n_{\mathrm{D}}^{20}=1.4669 .{ }^{1} \mathrm{H}$ NMR spectrum, δ, ppm : $1.0 \mathrm{~d}\left(3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.3 \mathrm{~d}\left(2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.4 \mathrm{~d}\left(2 \mathrm{H}, \mathrm{CH}_{2}\right)$, $1.7 \mathrm{~d}\left(2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.1 \mathrm{~d}(1 \mathrm{H}, \mathrm{CH}), 2.5 \mathrm{~m}\left(2 \mathrm{H}, \mathrm{CH}_{2}\right)$, $2.5 \mathrm{~m}(2 \mathrm{H}, \mathrm{CH}), 3.8 \mathrm{q}\left(4 \mathrm{H}, \mathrm{OCH}_{2}\right), 3.9 \mathrm{~m}(1 \mathrm{H}, \mathrm{CHO})$, $4.8 \mathrm{~s}(1 \mathrm{H}, \mathrm{OH}) .{ }^{13} \mathrm{C}$ NMR spectrum, δ, ppm: $85.6\left(\mathrm{C}^{2}\right)$, $70.6\left(\mathrm{C}^{9}\right), 70.1\left(\mathrm{C}^{8}\right), 69.8\left(\mathrm{C}^{10}\right), 40.1\left(\mathrm{C}^{1}\right), 39.9\left(\mathrm{C}^{4}\right)$, $36.8\left(\mathrm{C}^{3}\right), 28.7\left(\mathrm{C}^{6}\right)$, $28.4\left(\mathrm{C}^{11}\right), 25.9\left(\mathrm{C}^{7}\right)$. Found, \%: C 71.29; H 10.74. $\mathrm{C}_{11} \mathrm{H}_{20} \mathrm{O}_{2}$. Calculated, \%: C 71.70; H 10.94 .

1-(exo-5-Methylbicyclo[2.2.1]hept-exo-2-yloxy)-propan-2-ol (XV) was obtained from 54.0 g of compound II and 76.0 g of propane-1,2-diol in the presence of 1.35 g of the catalyst. Yield 84.1 g (91.4%), bp $96-97^{\circ} \mathrm{C}(5 \mathrm{~mm}), d_{4}^{20}=0.9988, n_{\mathrm{D}}^{20}=1.4690$. Found, \%: C 71.38; H 10.70. $\mathrm{C}_{11} \mathrm{H}_{20} \mathrm{O}_{2}$. Calculated, \%: C 71.70; H 10.94 .

1-(exo-5-Methylbicyclo[2.2.1]hept-exo-2yloxy)-butan-2-ol (XVI) was obtained from 54.0 g of compound II and 90.0 g of butane-1,2-diol in the presence of 1.35 g of the catalyst. Yield $87.7 \mathrm{~g}(88.6 \%)$, bp $98-$ $99^{\circ} \mathrm{C}(5 \mathrm{~mm}), d_{4}^{20}=0.9967, n_{\mathrm{D}}^{20}=1.4708$. Found, \%: C 72.48; H 11.02. $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{2}$. Calculated, \%: C 72.68; H 11.18 .

1-(exo-5-Ethylbicyclo[2.2.1]hept-exo-2-yloxy)-propan-2-ol (XVII) was obtained from 61.0 g of compound III and 76.0 g of propane-1,2-diol in the presence of 1.52 g of the catalyst. Yield $87.1 \mathrm{~g}(88 \%)$, bp $105-106^{\circ} \mathrm{C}(5 \mathrm{~mm}), d_{4}^{20}=0.9890, n_{\mathrm{D}}^{20}=1.4701$. Found, \%: C 72.28; H 11.08. $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{2}$. Calculated, \%: C 72.68; H 11.18.

1-(exo-5-Ethylbicyclo[2.2.1]hept-exo-2-yloxy)-butan-2-ol (XVIII) was obtained from 61.0 g of compound III and 90.0 g of butane-1,2-diol in the presence of 1.52 g of the catalyst. Yield $90.6 \mathrm{~g}(86 \%)$, bp 116$118^{\circ} \mathrm{C}(5 \mathrm{~mm}), d_{4}^{20}=0.9806, n_{\mathrm{D}}^{20}=1.4700$. Found, $\%$: C 73.32; H 11.22. $\mathrm{C}_{13} \mathrm{H}_{24} \mathrm{O}_{2}$. Calculated, \%: C 73.54; H 11.39.

REFERENCES

1. Yashna, O.G., Gavrilova, L.D., Rudnov, S.A., and Vereshchagin, L.I., Zh. Org. Khim., 1970, vol. 6, p. 971.
2. JPN Patent Appl. no. 55-76832; Ref. Zh., Khim., 1982, no. 2 N 35 P .
3. Bogatskii, A.V., Kotlyar, S.A., and Klimova, E.I., Ukr. Khim. Zh., 1985, vol. 51, p. 1206.
4. Gasanov, A.G. and Nagiev, A.V., Zh. Org. Khim., 1994, vol. 30, p. 707.
5. Mamedov, M.K., Nabieva, E.K., and Rasulova, R.A., Russ. J. Org. Chem., 2005, vol. 41, p. 974.
6. Gasanov, A.G., Mekhtiev, S.D., and Suleimanova, E.T., Azerb. Neft. Khoz., 1985, no. 7, p. 36.
7. Mamedov, M.K. and Suleimanova, E.T., Neftekhimiya, 1991, vol. 31, p. 350.
8. US Patent no. 4107223, 1978; Ref. Zh., Khim., 1980, no. 10 N 108 P .
9. Spravochnik khimika (Chemist's Handbook), Nikol'skii, B.P., Ed., Moscow: Khimiya, 1964, vol. 2.
